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Abstract

We study Higgs diphoton decays, in which both photons undergo nuclear conversion to electron-

positron pairs. The kinematic distribution of the two electron-positron pairs may be used to probe

the CP violating (CPV) coupling of the Higgs to photons, that may be produced by new physics.

Detecting CPV in this manner requires interference between the spin-polarized helicity amplitudes

for both conversions. We derive leading order, analytic forms for these amplitudes. In turn, we

obtain compact, leading-order expressions for the full process rate. While performing experiments

involving photon conversions may be challenging, we use the results of our analysis to construct

experimental cuts on certain observables that may enhance sensitivity to CPV. We show that there

exist regions of phase space on which sensitivity to CPV is of order unity. The statistical sensitivity

of these cuts are verified numerically, using dedicated Monte-Carlo simulations.
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I. INTRODUCTION

The recent discovery of a Higgs-like boson [1, 2] has prompted intense interest in the

precise measurement of its couplings and properties. Such measurements are a direct probe

of new physics (NP) beyond the Standard Model (SM), especially since many extensions of

the SM modify the Higgs couplings to gauge bosons and fermions.

Of particular interest is a search for parity and CP violating Higgs decays, since these

would be a clear signal of NP [3–20]. In Higgs decays to vector bosons the CP violating

effects can only be due to irrelevant NP operators. Fortunately, in the SM h → γγ (and

h → Zγ) decays are also due to irrelevant operators, with the first non-zero contribution

occurring at one-loop. Thus we can expect large CP violating effects from weak scale NP

in h → γγ. In contrast, the h → ZZ∗ and h → WW ∗ decays proceed in the SM through

relevant tree-level operators tightly related to the Z and W masses. CP violating effects

from NP are expected to be comparatively small in these decay modes.

In the presence of CPV, the total h→ γγ decay rate must be proportional to the sum of

squares of CP-even and CP-odd terms – i.e |CPeven|2+|CPodd|2 – and therefore, by comparing

the h→ γγ rate to the SM expectation, one may probe for NP directly. However, this type of

search cannot distinguish between CP-even and CP-odd NP contributions to the total rate.

Moreover if the CP-odd contribution is small, then CPV signals are quadratically suppressed,

and if it so happens that NP enters both the CP even and odd terms, such that the total

h → γγ rate matches the SM expectation, then one cannot detect NP at all. Probing

the differential h → γγ rate for CPV ameliorates these problems. In the first instance,

the differential rate may feature an interference term of the form 2CPevenCPodd. Combined

with non-interfering terms, one may distinguish CP-even and CP-odd NP contributions.

3



FIG. 1. An illustration of an example of a CPV sensitive observable in h → γγ → 4e. The

Higgs decays to on-shell photons which convert in the detector. The distribution of the azimuthal

angle ϕ between the two planes formed by each positron and its parent photon depends on the

Higgs couplings to CP even and odd operators. The electrons do not need to be co-planar with

the corresponding photon-positron planes. The positron-photon plane is shown in magenta and

the electron-photon plane in blue. For further details and subtleties see the main text.

Secondly, small CPV signals are only linearly suppressed in this interference term.

The h → γγ phase space distribution alone, however, is not sensitive to CP violating

effects, since the Higgs decays isotropically to two photons. Nevertheless, the underlying

CPV structure in the differential h→ γγ rate may be determined if one is able to measure

the linear polarizations of the outgoing photons. This in itself is an old idea, first proposed

for the determination of the π0 parity [21–23]. It relies on the fact that a spin-0 particle

decays to either two positive or two negative helicity photon states, which acquire a relative

CPV phase in the presence of non-trivial CP structure. The linearly polarized photon states

are a superposition of both helicities, permitting one to extract this CPV phase. It is not

feasible to directly measure the linear polarization of O(60 GeV) photons from Higgs decay.

However, in both the ATLAS [24] and CMS [25] detectors roughly half of the photons from

Higgs decays convert via the well-known Bethe-Heitler (BH) process into e+e− pairs inside

the silicon tracker. This has an important benefit: the orientation of the produced e+e−

pairs encodes the underlying CP structure. Figure 1 illustrates an observable expected to

be sensitive to CPV.

Previous proposals to measure CPV in h → γγ, or in other neutral meson diphoton

decays, via double photon conversion appear in Refs. [3, 23, 26]. We extend these studies
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by performing an analysis of the actual manner in which the leptonic phase space encodes

the CP violating effects. We examine the encoding of CPV in the doubly converted Higgs

diphoton decay – hereafter the Higgs-Bethe-Heitler (HBH) process – both analytically and

numerically, making use of the spinor-helicity formalism to obtain compact expressions for

the full differential scattering rate and its leading order terms.

A key difficulty in extracting CPV signals from differential scattering rates like dΓ/dϕ,

defined in Fig. 1, is that the signal is largely washed out under integration over the other

phase space variables. However, in this work we use our analytic control of the full dif-

ferential scattering rate to show that large CPV signals may be achieved. We find certain

observables exhibit O(1) sensitivity to CP violating effects on small regions of the phase

space, corresponding to a small fraction of the converted decays. These regions are identi-

fied by sensitivity parameters, derived from our analysis. We show analytically and confirm

numerically that if one cuts the HBH event data according to these sensitivity parameters,

the CPV signal is dramatically improved.

Performing such an experiment will be difficult. For example, one must resolve the

opening angles in the photon conversion, and this requires extremely accurate tracking

resolution. Other subtle effects, such as soft scatterings of the electron and positron in

the detector material need also to be examined. In addition, reaching a sensitivity to Higgs

couplings would require obtaining a signal-rich sample of h→ γγ events. Our approach here

is to defer these considerations to future work, and consider mainly the theoretical aspects of

this process. In doing this, our intent is to motivate a very challenging measurement, perhaps

to be done after the LHC upgrade or in a future Higgs factory. We note however, that as

a warm-up to Higgs studies, photon conversions can be studied in background samples as a

test of the standard model (we present the phase space structure of q̄q → γγ with converted

photons in an appendix).

This paper is structured as follows. In Section II we first present a motivating phe-

nomenological analysis of the expected size of CP violation in Higgs decays, followed by an

analysis of the unconverted h → γγ process. This is presented in the language of helic-

ity amplitudes and we show that the CPV terms in the differential rate arise from helicity

amplitude interference. In Section III we discuss photon propagation and conversion in mod-

ern detectors, angular resolution limits, and the central role of the nuclear form factor in

Bethe-Heitler conversion. In Section IV we then proceed to examine the HBH process itself,
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presenting explicit results within the spinor-helicity formalism for the leading order HBH

square amplitude. This is followed in Section V by a derivation of CPV observables and

their sensitivity parameters for the special case that the Higgs is at rest. These sensitivity

parameters can be used as cuts, which extract the phase space regions on which we expect

O(1) CPV effects. Numerical simulations are presented which confirm these expectations,

and further compare the performance of the various sensitivity parameter cuts. In this work

we focus on the h→ γγ decay, but our analysis can be used to examine other searches, e.g.,

for h→ Zγ or other decays involving converted photons.

II. HIGGS DIPHOTON DECAY WITH CP VIOLATION

A. Motivation for measuring CP-violation in di-photons

The CP structure of Higgs decays was already studied experimentally in h→ ZZ∗ decays

[27, 28], with pure pseudo-scalar coupling disfavored at more than 3σ [28]. Still, there is

strong motivation to measure CPV also in loop induced h → γγ decays. The motivation

is based on the expected sizes of CP violating and CP conserving terms in h → γγ and

h→ ZZ∗ decays. After electroweak symmetry breaking (EWSB), the relevant terms in the

effective Lagrangian at the scale µ ' mh/2 are

Leff ⊃ cV
m2
Z

v
hZµZµ + ĉ

α

πv
hFµνF

µν + ĉZZ
α

πv
hZµνZµν

+ c̃ZZ
α

2πv
hZµνZ̃

µν + c̃
α

2πv
hFµνF̃

µν , (1)

in which Fµν and Zµν are respectively the photon and Z field strengths, and X̃µν = εµναβXαβ,

ε0123 = 1, while v = 246 GeV is the Higgs vev. Taking Higgs to be a scalar, the first line

of Eq. (1) contains CP even and the second line CP odd operators.1 Present data imply

cV = 1.04 ± 0.13 [29], assuming CP conservation. If either c̃ZZ or c̃ are found to be non-

zero,2 CPV in Higgs couplings and thus NP will be discovered. The couplings ĉ and c̃ arise

at one-loop in perturbative UV theories, and can be at most O(1) in order to agree with

the observed h → γγ rate. For example, c̃ can arise from a massive NP fermion loop that

1 Since all the couplings are C even, P and CP violation are the same. While we hereafter always refer to

CP violation, it should be kept in mind that it is equivalent to parity violation for this effective theory.
2 In fact, c̃ may be non-zero at three loops in the SM [30]. However, since this contribution falls well

below the feasible detection threshold for the experiments under consideration in this work, we neglect

this contribution, and treat the SM value as c̃ = 0.
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is axially coupled to the Higgs. Note that in Eq. (1) we integrated out both W and t loop

contributions to ĉ, so that ĉSM = −0.81 in the SM. Similarly, the dimension 5 couplings

of Higgs to ZZ, ĉZZ and c̃ZZ , also arise at one-loop order. In generic NP models we thus

expect ĉ ∼ ĉZZ and c̃ ∼ c̃ZZ .

The h→ ZZ∗ decay is dominated by the CP even renormalizable coupling cV , while the

h → γγ decay is given by higher dimensional operators. The relative size of CP violating

effects in any channel is given by the ratio of the interference terms to the total amplitude

squared. For h→ ZZ∗ the CP odd interference term is proportional to (α/2π)c̃ZZcV , while

the total squared amplitude is dominated by c2
V . The typical size of CPV observables in

h→ ZZ∗ is therefore set by the ratio of the two,

rZZ∗ =
α

2π

c̃ZZ
cV
∼ O(10−3) , (2)

for O(1) couplings. In the diphoton channel both terms are loop suppressed and the figure

of merit for CP violation is

rγγ =
ĉc̃

ĉ2 + c̃2
∼ O(1) , (3)

again assuming O(1) couplings. As will become clear, the measurement of CPV in h→ γγ

is a challenging one, especially in comparison to the relatively straightforward measurement

in h→ ZZ∗. However, the expected size of the effect may partially compensate for this.

In addition to the CPV observables discussed in this paper, the CPV operator in Eq. (1)

also modifies the overall h→ γγ decay rate, so that

µγγ ≡
Γ(h→ γγ)

Γ(h→ γγ)SM

=
ĉ2 + c̃2

ĉ2
SM

, (4)

where Γ(h → γγ)SM is the SM rate. The total rate is only quadratically sensitive to CP

violating NP because the interference terms integrate to zero over phase space.In contrast,

the differential rates contain CP odd terms proportional to ĉc̃ and thus may be linear in the

NP coupling. This can lead to substantial increase in sensitivity for small c̃.

Before proceeding, two remarks are in order. First, it is important to mention that there

are severe constraints on yec̃ from bounds on the electric dipole moment of the electron [31,

32]. Taking the electron yukawa, ye, to be the SM one, this gives c̃ . 10−3. These bounds are,

however, absent in the limit where the 125 GeV Higgs does not couple to electrons (for other

possibilities in concrete UV models, see [31, 33]). A strong motivation for contemplating a

non-zero value of c̃ is, for instance, that it would be generated by new CP sources in models
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that lead to electroweak baryogenesis, see e.g., [33]. An independent measurement of c̃ is

thus desirable.

Second, we assumed here that ĉ and c̃ are real. In the SM ĉ obtains its dominant

contribution from a W loop and a smaller destructive contribution from a top quark loop.

However, there is also a smaller contribution from b quark and light quarks. These can go

on-shell in the loop, generating complex effective couplings ĉ and c̃. This means that ĉ and

c̃ obtain a relative strong phase. The result of such a strong phase, when combined with the

weak phase, would be to induce direct CPV in decay, such that the decay rate of the Higgs

into two positive helicity photons is not the same as into two negative ones. These strong

phases are of ∼ O(1%) in the SM [34], and we assume the strong phases are similarly small

for NP effects. Consequently, we neglect direct CPV, and assume that ĉ and c̃ are real.

B. Helicity interference

We proceed to examine the unconverted h→ γγ process. The effective operator mediat-

ing h→ γγ decay has the general form, cf. Eq. (1),

Heff = −ĉ α
πv
hFµνF

µν − c̃

2

α

πv
hFµνF̃

µν . (5)

For a Higgs that is a scalar, the first term is CP even and the second is CP odd. CP is

therefore violated if the CP phase

ξ ≡ tan−1(c̃/ĉ) , (6)

is found to be non-zero.

The h→ γγ helicity amplitudes are (dropping the overall α/πv factor, cf. Eq. (5))

iMλ1λ2 =

k1, λ1

k2, λ2

= ĉ
[
(k1 · k2)(ελ11 · ελ22 )− (k1 · ελ22 )(k2 · ελ11 )

]
+ c̃ ε

[
k1, k2, ε

λ1
1 , ε

λ2
2

]
, (7)

where ki are the photon momenta, ελii is the polarization vector of the ith photon (i = 1, 2)

with helicity λi = ±, and ε[p, q, r, s] ≡ pµqνrρsσε
µνρσ. A Latin subscript i = 1, 2 hereafter

denotes the corresponding photon. To compute helicity amplitudes we employ the spinor-

helicity formalism, see Appendix A for our conventions and a brief review. Using Eqs. (A5),
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(A6) and (A10), one finds that the non-zero helicity amplitudes are

M±± = m2
h(ĉ∓ ic̃) = m2

h

√
ĉ2 + c̃2 e∓iξ , (8)

while M±∓ = 0 as expected from angular momentum conservation (cf. also the results of,

e.g., [35, 36] for h → ZZ). We see that CPV introduces a relative phase, ξ, between the

two-photon helicity amplitudes. Furthermore, a differential rate may depend on ξ if and

only if there is interference betweenM++ andM−−, or more precisely, between amplitudes

involving the ++ and −− photon helicity configurations. We call such interference helicity

interference.

Let us now translate Eq. (8) into a Hilbert space language. The final states of h → γγ

decay are the two-photon states |++〉 and |− −〉, with ± indicating the helicity of each

photon, so that CP|±±〉 = |∓∓〉. Eq. (8) then translates to

Heff |h〉 ∝
√
ĉ2 + c̃2

(
e−iξ |++〉+ eiξ |−−〉

)
. (9)

As above, the CP phase ξ appears as a relative phase between the |++〉 and |−−〉 terms.

Now, the total rate for h→ γγ decay is proportional to∑
f=++,−−

|〈f |Heff |h〉|2 =
∑

f=++,−−
|Mf |2 . (10)

Orthogonality of |++〉 and |− −〉 ensures that the total rate is independent of ξ, i.e., there

is no helicity interference. In contrast, any experiment for which the final state is a linear

superposition of the two helicity states would generate helicity interference. This is the case

at collider experiments in which the on-shell photons with definite helicity are intermediate

states: The final state is a converted photon – an e+e− pair with a particular set of momenta

– which has non-vanishing overlap with both helicities.

C. A thought experiment with polarizers

The overlap of each photon helicity with a Bethe-Heitler (BH) pair will determine the

strength of helicity interference and our ultimate sensitivity to the Higgs CP properties. The

details at the level we need are quite involved, and will be described in Sec. IV. As a warm-

up we instead consider a thought experiment in which we can measure linearly polarized

photons.

9



k1

k2 εlin1

εlin2

φ

P1

P2

FIG. 2. A linear polarization thought experiment in Higgs rest frame. P1,2 are linear polarizers

oriented orthogonal to the photon momentum direction. The angle φ is measured between the

linear polarization vectors εlin
1,2.

Let us imagine that we have been able to manufacture a linear polarizer for gamma

rays. We produce a Higgs at rest between polarizers P1 and P2, such that each photon

travels through a polarizer (see Fig. 2) before being absorbed by a detector that counts

photons. The polarizer Pi (i = 1, 2) projects an incoming photon onto a linearly polarized

state, |φi〉 = eiφi |+〉+ e−iφi |−〉, that has polarization oriented at angle φi. From Eq. (9) the

amplitude of the two-photon wave function observed by the detectors is

(
e−iφ〈+|+ eiφ〈−|

)
2
⊗
(
〈+|+ 〈−|

)
1
Heff |h〉 ∼

√
ĉ2 + c̃2 cos(φ+ ξ) , (11)

where φ = φ1 − φ2 is a relative azimuthal angle between the two polarizers. As the angle φ

is changed, the differential rate in the detectors changes as cos2(φ+ ξ). One finds

dΓ

dφ
=

2

π
Γh→γγ cos2(φ+ ξ) , Γh→γγ =

α2

4π3

m3
h

v2
(ĉ2 + c̃2) . (12)

Note that the CP odd term in the differential rate (12) is proportional to sin 2ξ sin 2φ ∝
ĉc̃ sin 2φ. The differential rate is thus linearly sensitive to CPV coupling c̃, whereas the total

rate is quadratically sensitive.

In summary, we have shown that only the terms receiving contributions from both of the

definite helicity two-photon amplitudes, so that there is helicity interference, are sensitive

to the CPV phase ξ. These interference effects can in principle be of O(1) in size.
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FIG. 3. The contributions to photon cross-section on 28Si, σγ(28Si), from BH e+e− pair production

in nuclear field (solid blue line), pair production due to scattering on electron cloud (red dashed),

Compton scattering (dot-dashed yellow) and Rayleigh scattering (magenta double dot-dashed), as

a function of photon energy Eγ . Calculated using NIST’s XCOM database [37].

III. BETHE-HEITLER PHOTON CONVERSION

We now study the process that can be used for photon polarization measurement, namely

the conversion of a photon into an e+e− pair in matter. In this section we study a conversion

of single isolated photon, which we will then use in the Sec. IV for the case of h→ γγ with

converted photons.

A. Photon propagation and conversion

Photon conversion to e+e− pairs may proceed either by Dalitz conversion in vacuum,

for an off-shell intermediate photon, or by Bethe-Heitler (BH) conversion on atomic nuclei,

which occurs for on-shell photons (for a review see, e.g., [38, 39]). The Dalitz conversion rate

carries a suppression factor of O(10−4), and is not of immediate practical interest. Moreover

it mainly proceeds via a longitudinal photon so that the above helicity analysis no longer

applies. In contrast, the CMS and ATLAS pixel detectors contain a significant amount of

material, so that ∼ 50% of photons convert inside the tracking systems via the BH process

[40, 41]. Based on the composition of the detectors, we assume in this work that the target

nucleus is always 28Si, at rest in the laboratory frame. This nucleus is spin-0, and has no
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FIG. 4. Cumulative distributions of Bethe-Heitler conversion cross-section for a photon with

Eγ = 60 [GeV] scattering on a 28Si nucleus, with respect to various opening angle cuts. Three

distributions are shown: P (θ`` > θcut), i.e. with photon-lepton opening angles, θ±, unconstrained

(blue line); P (θ+ and θ`` > θcut) with electron-photon opening angle θ− unconstrained (red dashed

line); P (θ± and θ`` > θcut) (black dot-dashed line).

nuclear magnetic moment. We therefore do not consider the effects of target polarization

on the BH process [42].

One might be concerned by the prospect of photon polarization decoherence for the

photons propagating inside the silicon. However, at photon energies ∼ O(mh/2) the pair

production in the nuclear field is by far the largest contribution to the photon scattering

cross-section in an atomic lattice [43], see Fig. 3. As a result, to an excellent approximation,

the photons remain coherent up until their BH conversion. We shall also assume that the

BH scattering is quasi-elastic, i.e. that the target nucleus remains in a coherent state during

and after the scattering. For the kinematics considered, the quasi-elastic limit is an excellent

approximation of the full BH conversion [38, 39].

B. Angular resolution limitations

Following the h → γγ experiment discussed in Sec. II C, in order to measure the CPV

in a doubly converted h → γγ decay, we might expect that angular distributions between

planes formed by spatial momenta need to be measured. There are several possible planar
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distributions that can be constructed, involving either:

i) The e+e− plane formed by the e+e− momenta, or;

ii) The γe± plane formed by a lepton and its parent photon, as in Fig. 1.

The first requires resolving the orientation of the leptonic spatial momenta. The second

requires the orientation of the leptons with respect to their parent photon, which could be

achieved by identifying the vertex associated with the Higgs (from other tracks in the event)

as well as the location of the photon conversion, giving the photon direction.

Such measurements require exquisitely precise tracking. Because the momentum transfer

to the nucleus is small, the relative angular orientations between the photon and leptons are

tiny in typical photon conversion: for mass m and energy E, the angular scale is typically

m/E ∼ 10−5 for a 60 GeV photon conversion to electrons. There is however a distribution

for these angles. In the limit of very large statistics one can hope to get a sample of events

where these angles can be measured.

In the ATLAS detector, for instance, the intrinsic accuracy in silicon pixels located be-

tween 5cm and 12 cm from the interaction point is 10µm in R − φ direction and 115µm in

z direction. The intrinsic accuracy of SCT strips located between 30cm to 51cm from the

interactions point is 17µm (R− φ) and 580µm(z) [44]. One may therefore hope to measure

the orientations of the e+e− plane even for opening angles as small as θ`` ∼ 10−4 − 10−3,

where the relative leptonic angle θ`` is defined by

cos θ`` =
p+ · p−
|p+||p−|

, (13)

for leptonic spatial momenta p±. By comparison, a 60 GeV photon converting to a e−e+

pair has an opening angle of θ`` > 10−4 in 38% of the cases and θ`` > 10−3 in 4% of the

cases. The full cumulative distribution for θ`` > θcut, is shown in Fig. 4.

Another experimental challenge is the multiple scattering of outgoing electrons when

traversing the detector medium. This can affect the measurement of the electron direction

and thus the orientation of the e+e− or γe± plane. Using Eq. (30.15) in [43], the width

of the angular distribution is ∼ 10−4 for a 30 GeV electron, assuming it traverses ` = 0.1

radiation lengths of the material. This width roughly scales as
√
`/E, where E is the lepton

energy. The measurement of polarization planes in the current and future detectors will

thus be challenging, but may be achievable on a statistical basis. Bearing in mind these

13
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2 ∼ 1 for |a2 q2| � 1 (red dashed line). The scale at which

screening of the nucleus becomes important is denoted by a, which is smaller than the Si atomic

radius, ratom. At scales well outside the atom, corresponding to small −q2, nuclear conversion is

suppressed by the form factor screening.

experimental questions, in the remainder of this paper we adopt a theoretical approach to

this problem: We consider a thought experiment where all angles can be resolved and explore

the sensitivity to Higgs parameters in this best-case scenario.

C. Nuclear form factor

The BH conversion depends on a momentum transfer, qµ, between the photon and the

nucleus. Assuming quasi-elastic scattering, the photo-nuclear scattering is encoded in an

elastic nuclear form factor Gel
2 [q2] (see Eq. (22) below). This form factor plays an important

role of suppressing scattering at low −q2, that is, at scales larger than the Si atom.

Let us discuss briefly the behavior of the nuclear form factor. The threshold for an

Eγ ' 60 GeV photon to convert to an e+e− pair is at −q2 = 4m4/E2
γ ' 10−18 GeV2, with

m the electronic mass, but can occur at momentum transfers as large as −q2 ∼ 10−6 GeV2.

This should be compared with the radius of the Si atom, ratom ' 1.1Å [45] or r−2
atom ' 10−12

GeV2, and with the nuclear radius rnuclear ' 4 fm which gives r−2
nucl ' 10−3 GeV2. Within

the −q2 range of interest for conversion – 10−18 up to 10−6 GeV2 – the nuclear charge is thus
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screened at low −q2 by the atomic shell electrons. In this work we use the simple expression

for the atomic form factor [46] described in detail in [38] and given by

Gel
2 (q2) =

a4q4

(1− a2q2)2
, (14)

where a = 184.15(2.718)−1/2Z−1/3/m and Z is the atomic number of the nucleus. For 28Si,

a−2 = 1.22× 10−10 GeV2. There are two limits of interest. The first is |a2 q2| � 1 in which

Gel
2 ∼ 1, the second is the limit |a2 q2| � 1 in which Gel

2 ∼ q4, see Fig. 5. That is, the

form factor suppresses the BH cross-section for small −q2 � a2. To the extent that the

1/q4 factor in the BH cross-section determines the dominant phase space configurations of

the final states, this suppression significantly alters the important regions of phase space for

BH conversion up to the a−2 scale. Specifically, the form factor increases the probability of

significantly acoplanar BH conversions.

IV. THE HIGGS-BETHE-HEITLER PROCESS

In this section we present a formal analysis of the Higgs-Bethe-Heitler (HBH) process,

h → γγ with both photons converting to e+e− pairs. The main result is that we obtain

compact, leading order expressions for the HBH rate, and gain insight into the structure of

the terms sensitive to CP violation.

A. Amplitude and cross-section

The amplitude of interest is given by a menorah diagram, consisting of a h → γγ and

two BH conversion subdiagrams, summed over internal photon polarizations, viz.

iMµν
1rs2rs =

k1, λ1

k2, λ2

p1+ , s1

p1− , r1

p2+ , s2

p2− , r2

P

P ′
1µ

P

P ′
2

ν

q1

q2

+ lepton exchanges
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=
1

Λ

∑
λ1,λ2

[
ĉ
(
k1 · k2g

αβ − kβ1kα2
)

+ c̃
(
k1ρk2σε

ρσαβ
)]

(ελ1α )∗(ελ2β )∗[Mµ
BH]λ11rs [M

ν
BH]λ22rs ,

(15)

in which Λ = πv/e6α, for QED coupling e. The BH amplitudes are

[Mµ
BH]λiirs = ūri(pi−)

[
/ελi

i

/pi−
− /ki −m

γµ + γµ
i

/ki − /pi+ −m
/ελi
]
vsi(pi+) , (16)

where we have not yet taken nuclear form factors into account, and kept explicit the cor-

responding Lorentz index of the nuclear electromagnetic current. The Latin subscripts,

i = 1, 2, label each photon, while si, ri = 1, 2 are respectively the positron and electron

spins (see Eq. (A8)), and λi = ± the outgoing photon helicities from the h → γγ vertex.

We have also suppressed repetitions of the photon index, such that Xirs is henceforth a

shorthand for Xirisi
. We shall often refer to the BH subdiagrams for each photon as the

photon branch.

We assume both nuclei are initially at rest in the lab frame, so P µ = (M,0) where M

is the mass of the nucleus. The Higgs need not be at rest in the lab frame. As discussed

in Sec. III A, we assume quasi-elastic scattering, that is P ′2i = P 2 = M2. This implies that

2qi · P + q2
i = 0, and so

Ei − Ei+ − Ei− + q2
i /2M = 0 , (17)

where Ei, Ei± are the photon and lepton energies respectively. It is also convenient to define

Qµ
i ≡

1

M

(
P µ − qµi

qi · P
q2
i

)
=

1

M

(
P µ +

qµi
2

)
, (18)

under quasi-scattering conditions. The exchange energy with the nucleus q0
i ≡ P

′0
i − P 0

i �
M . I.e. the nucleus velocity is non-relativistic, so to an excellent approximation, it follows

that

Ei ' Ei+ + Ei− , Qµ
i ' (1,0) , (19)

in the lab frame.

We define the BH nuclear form factor tensors on each photon branch [38],

Wµν
i = −W1(q2

i )

(
gµν − qµi q

ν
i

q2
i

)
+W2(q2

i )Q
µ
iQ

ν
i , (20)
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such that the unpolarized HBH squared amplitude

|M|2
∏
i=1,2

2Mδ(M2 − P ′i 2) =
1

q4
1q

4
2

∑
ri,si

Mµν
1rs2rsM

∗µ′ν′
1rs2rsW1µµ′W2νν′ . (21)

On the left of Eq. (21) we have factored out the δ−functions that enforce quasi-elastic

scattering. The form factor W1(q2) = 0 for quasi-elastic scattering on a spin-0 nuclear

target [42], while

W2(q2) = 2Mδ(M2 − P ′2)Gel
2 (q2) , (22)

in which Gel
2 (q2) is the form factor given in Eq. (14). Hence the unpolarized HBH squared

amplitude reduces to

|M|2 =
Gel

2 (q2
1)Gel

2 (q2
2)

q4
1q

4
2

∑
ri,si

Mµν
1rs2rsM

∗µ′ν′
1rs2rsQ1µQ1µ′Q2νQ2ν′ . (23)

B. Helicity structure

One may calculate |M|2 via the usual Feynman method, which relies on polarization

completeness relations to compute traces. This approach leads to thousands of terms, of

which the näıvely dominant terms cancel due to Ward identities. Extracting leading order

expressions is therefore difficult, and moreover, high numerical precision is required for

numerical stability. As an alternative, we employ a spin and helicity analysis combined with

the spinor-helicity formalism to compute the HBH amplitudes. These may be subsequently

squared and summed over external spins to produce the full HBH rate. In the following we

provide a brief overview of these results, while details are provided in Appendices A and B.

The BH spin-helicity amplitudes are defined as

α±irs ≡ [Mµ
BH]±irsQiµ/q

2
i . (24)

With reference to Eqs. (15) and (23), the HBH spin-helicity amplitudes are correspondingly

iMλ1λ2
1rs2rs =

√G1G2

Λ

[
ĉ
(
k1 · k2g

αβ − kβ1kα2
)

+ c̃
(
k1ρk2σε

ρσαβ
)]

(ελ1α )∗(ελ2β )∗αλ11rsα
λ2
2rs , (25)

where we introduced the abbreviation

Gi ≡ Gel
2 (q2

i ) . (26)
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Making use of the spinor-helicity formalism (see Appendix A), we obtain the spin amplitudes

M1rs2rs ≡
∑
λ1λ2

Mλ1λ2
1rs2rs =

m2
h

Λ

√
G1G2

√
ĉ2 + c̃2

(
e−iξα+

1rsα
+
2rs + e+iξα−1rsα

−
2rs

)
. (27)

These are reminiscent of equation (9) with final leptonic spin states 〈risi| and α±irs ∝ 〈siri|±〉,
as expected. The HBH square-amplitude is correspondingly

|M|2 ≡
∑

1rs2rs

∣∣∑
λ1λ2

Mλ1λ2
1rs2rs

∣∣2 = m4
hG1G2

ĉ2 + c̃2

4Λ2

∑
1rs2rs

∣∣∣α+
1rsα

+
2rse

−iξ + α−1rsα
−
2rse

iξ
∣∣∣2 . (28)

Note that the sum over photon polarizations is inside the absolute value as expected for

entangled h → 2γ → 2(e+e−) decay, but the sum over lepton spins is incoherent. Eq. (28)

shows that the BH spin-helicity amplitudes α±irs are all one needs to determine the entire HBH

square amplitude. Parity invariance of the BH amplitudes relates amplitudes of opposite

helicity and spins to their complex conjugates,

(α+
rs)
∗ = ηrsα

−
r̄s̄ , (29)

where s̄ is the opposite spin to s, and η2
rs = 1, ηrs = ηr̄s̄. Hence we need only determine

α+
irs

. We shall see below that spinor-helicity methods, when applied to α±irs , also allow for a

well-controlled expansion of dominant, sub-dominant and negligible terms in |M|2.

We see explicitly from Eq. (28) that the helicity interference terms are equivalent to the

ξ-dependent terms, as discussed in sections II B and II C. For a particular leptonic spin

configuration {ri, si}, helicity interference occurs so long as α+
irs

and α−irs are both non-zero.

However, we see in appendix B, and in particular in Eq. (B3), that for our particular choice

of spinor basis (see Eq. (A8))

|α+
i11
| ∼ |α+

i12
| ∼ |α+

i21
| � |α+

i22
| , (30)

or equivalently |α−i22| ∼ |α−i12| ∼ |α−i21| � |α−i11|. This hierarchy means that we may therefore

discard any terms containing either α+
i22

or α−i11 as subleading. It follows that the leading

order squared amplitude is

|M|2 ' m4
h

ĉ2 + c̃2

4Λ2
G1G2

{
2
∣∣∣α+

111
α+

211

∣∣∣2+ 2
∑
j 6=k
rk 6=sk

∣∣∣α+
j11
α+
krs

∣∣∣2+
∑
r1 6=s1
r2 6=s2

∣∣∣α+
1rsα

+
2rse

−iξ + α−1rsα
−
2rse

iξ
∣∣∣2},
(31)
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while the leading interference term is

|M|2
∣∣
int
' 2m4

h

ĉ2 + c̃2

Λ2
G1G2Re

{
α+

112
α+

121
α+

212
α+

221
e−2iξ

}
. (32)

We see that only α+
12,21 (or equivalently α−21,12) amplitudes enter the leading order ξ-

dependent interference terms.

The CP odd helicity interference term in (32) is proportional to ĉc̃,

|M|2
∣∣
int,CP−odd

= −2m4
h

ĉc̃

Λ2
G1G2Im

{
α+

112
α+

121
α+

212
α+

221

}
. (33)

Note that interference terms between amplitudes, produced by the FF and FF̃ operators

respectively, are CP odd. However, the helicity amplitudes under consideration here receive

contributions from both CP odd and CP even operators – manifestly they depend on ξ – and

hence helicity interference terms contain both CP-even and CP-odd pieces. Consequently,

we interpret the remaining piece of the helicity interference term to be the CP-even piece,

|M|2
∣∣
int,CP−even

= m4
h

ĉ2 − c̃2

Λ2
G1G2Re

{
α+

112
α+

121
α+

212
α+

221

}
. (34)

This term has quadratic dependence on c̃2, albeit a different one than the total rate (12).

C. The Bethe-Heitler helicity amplitudes

In Eqs. (31) and (32) we have expressed the leading order HBH rate and interference

term in terms of individual BH helicity amplitudes, α±rs. In this subsection we proceed to

present the leading order terms of these amplitudes in a readily accessible notation, for

the special case that the Higgs is at rest in the lab frame. The results below are achieved

via spinor-helicity techniques; a more comprehensive presentation of the derivation of these

results is provided in Appendix B. There, explicit results for each spin helicity amplitude

α±irs are collected in Eqs. (B2), while the leading order results, obtained by power counting in

m/mh, are provided in (B3). The compact results below will permit us, in the next section

of this paper, to study the encoding of the CPV structure in the HBH rate at an analytic

level.

Before proceeding, we may first derive a new result concerning the well-studied unpolar-

ized BH square amplitude, |MBHi |2 =
∑

rsλ |αλirs |2. Using Eqs. (B2) one may show that

|MBHi|2 ' 8
Gim2

q4
i

[
Ei−(ki · pi−)− Ei+(ki · pi+)

(ki · pi−)(ki · pi+)

]2

− 4
Gi
q2
i

E2
i+

+ E2
i−

(ki · pi−)(ki · pi+)
. (35)

19



This compact expression for the BH rate in the quasi-elastic scattering limit is novel to this

work. A numerical analysis and validation of the resulting BH differential cross-section is

provided in Appendix D.

Now, in the special case that the Higgs is at rest in the lab frame, that is Ph = 0,

Eqs. (B3) for the α±irs collapse to very simple expressions. Using the leading order results

(B3) and assuming θ± � 1, for each branch one finds

α+
11 = −(α−22)∗ ' 2

√
2γ+γ−
q2

(
1

1 + γ2
+θ

2
+

− 1

1 + γ2
−θ

2
−

)
,

α+
12
21

= +(α−21
12

)∗ ' ±2
√

2γ+γ−
q2

γ∓
γ+ + γ−

(
γ+θ+e

−iφ+

1 + γ2
+θ

2
+

+
γ−θ−e−iφ−

1 + γ2
−θ

2
−

)
,

α+
22 = −(α−11)∗ ' 0 .

(36)

Here θ± and φ± are respectively the polar and azimuthal angles defined with respect to the

branch parent photon momentum, as shown in Fig. 6, and γ± ≡ E±/m� 1. We also assume

that the O(θ) terms do not cancel completely. The latter may occur on the phase space

slice γ+θ+ = γ−θ− and |φ− − φ+| = π, corresponding to minimal |q2|. Excellent numerical

validation of this expansion implies that the neighborhood of this phase space slice, on which

the expansion fails, is actually of negligibly small measure. Finally, we may approximate q2

by

− q2 ' m2
(
γ2

+θ
2
+ + γ2

−θ
2
− + 2γ−γ+θ−θ+ cos(φ− − φ+)

)
+
m2

4

[
1

γ+

+
1

γ−

]2

. (37)

Eqs. (36) and (37), when combined with Eq. (28), form one of the central results of

this paper: a compact form of the HBH rate, which is both numerically stable, and whose

structure may now be studied analytically. For example, it is now manifest that HBH polar

angular structure is dominantly controlled just by the k · p+/m
2 ' 1 + γ±θ± denominators,

which produce a peak near θ±γ± ∼ 1. More importantly, we see that the α±12,21 amplitudes,

that control the helicity interference terms, contain phases which are the leptonic azimuthal

orientations, φi± . This non-trivial result, when combined with Eq. (32) shows us that, at

leading order, ξ manifests as a phase shift in the relative azimuthal orientations of leptons

with different parent photons.
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k1

k2

x̂

φ1+

φ1−

θ1+

θ1−

p1+

p1−

x̂

p2+ φ2+

p2−
φ2−

θ2+

θ2−

FIG. 6. Definitions of local spherical polar angles {θi± , φi±}. Note in particular that azimuthal

angles, φi± are positively oriented with respect to their parent photons, and are defined with respect

to an azimuth x̂ common to both branches. Polar angles are defined with respect to parent photon

momentum (black dotted).

V. SENSITIVITY TO CPV

In this section we assess the potential sensitivity to CP violation. To do this, we consider

a number of CPV sensitive observables and propose several sets of kinematic cuts that can

enhance the CPV signal. These sets of cuts require that the lepton-lepton opening angle

(13), θ``, can be resolved, as well as the two photon-lepton angles, θ±. In the following we

mostly consider angular resolution cuts of the form

θ`` , θ± > θcut . (38)

Following Sec. III B, we apply an angular resolution cut θcut = 10−4, which is at the edge of

what may be possible with present detectors, and a looser, futuristic θcut = 10−5, intended

to show that very large CPV effects are possible in principle.

We emphasize that as our measurement is a novel, challenging one, our goal here is not

to conduct a full collider analysis including backgrounds. Rather our aim is to identify the

types of observables that can probe CP violation in h→ γγ, and estimate how well they do

under ideal circumstances: a high efficiency in reconstructing conversions and a signal rich

channel. This is in the anticipation that such circumstances might materialize in a future

LHC running or at a Higgs factory.
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A. Differential scattering rate

The HBH differential scattering rate for the full 3→ 6 process (Higgs plus two nuclei to

two nuclei and two e+e− pairs) in the lab frame is

dΓ ∝ |M|2dΠh→γγdΠBH1dΠBH2

∝ 1

(2π)12
|M|2

[ ∏
i=1,2
α=±

d3piα
2Ei

][ ∏
i=1,2

d3P ′i
2E ′i

d3ki
2Eiα

δ(4)(qi + pi+ + pi−− ki)
]
δ(4)(Ph − k1 − k2) ,

(39)

with |M|2 given by Eq. (28). Integrating over the out-going nuclear momenta and all other

momenta in delta functions, we obtain in the limit |q| �M

dΓ ∝ 1

(2π)12

m2
h

4M2
|M|2

[ ∏
i=1,2
α=±

|piα|dΩiα

]
dE1−dE2−dΩ1 , (40)

with dΩiα the solid angle for each lepton momentum piα , and dΩ1 the solid angle for pho-

ton ‘1’. The photon labels are extrinsic. We take photon ‘1’, say, as westwards going (if

Higgs is not at rest one can also take it to be, e.g., the more energetic photon).

For simplicity, we assume henceforth that the Higgs is at rest in the lab frame, that is

Ph = (mh,0). In the Higgs rest frame the photon angular dependence is isotropic, and

the integration over dΩ1 is trivial. Dropping the prefactors, the differential scattering rate

becomes

dΓ ∝ |M|2
[ ∏
i=1,2
α=±

|piα |dΩiα

]
dE1−dE2− . (41)

We may now proceed to consider CPV observables.

B. Global sensitivity to CP violation

In principle all the information about c̃ 6= 0 (or equivalently ξ 6= 0) is encoded in the

full HBH differential distribution. The coefficient c̃ may be determined by a matrix element

method [47–52], as long as backgrounds can be kept under control. Estimating the full

power of the matrix element method is beyond the scope of this work.

To test the sensitivity of HBH to c̃ we instead introduce a parameter

ZB(ĉ, c̃) =

∫
|dΓ(sm)/dps− dΓ(ĉ, c̃)/dps| dps

Γ(sm)
. (42)
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FIG. 7. Top panel: ZB in the ĉ− c̃ plane, with the SM point at (ĉ, c̃) = (−0.81, 0). Bottom panel:

ZcB as a function of ξ = tan−1(c̃/ĉ). The scatter of the data points is a numerical artifact.

The parameter ZB can be thought of as a proxy for the sensitivity of the matrix element

method, once one integrates over the full phase space. In the top panel of Fig. 7 we show

the value of ZB in the (ĉ, c̃) plane. There we see that the deviation from the SM is mostly

due to the ĉ2 + c̃2 enhancement of the h→ γγ rate, which need not arise from CP violation.

Such an enhancement is best detected by measuring the overall h→ γγ rate, and not using

our method.

To assess the sensitivity to CP violation alone, we should restrict our attention to the

circular contour ĉ2 + c̃2 = ĉ2
SM, on which the total HBH rate matches the SM rate for any ξ.

This contour is shown as a white circle in the top panel of Fig. 7. To this end, we define a
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second quantity

Zc
B(ξ) ≡ ZB(ξ)

∣∣∣∣
ĉ2+c̃2=ĉ2SM

=

∫ ∣∣∣dΓ̂(0)/dps− dΓ̂(ξ)/dps
∣∣∣ dps

Γ̂(0)
, (43)

where dΓ̂(ξ) is the differential HBH rate with the enhancement of the total h → γγ rate

factored out,

dΓ(ĉ, c̃)/dps =
(ĉ2 + c̃2)

ĉ2
SM

dΓ̂(ξ)/dps. (44)

Note that in general ZB ∈ [0,∞), but Zc
B ∈ [0, 2].

The bottom panel in Fig. 7 shows the value of Zc
B as a function of ξ. The sinusoidal

dependence of Zc
B on ξ is not unexpected. For instance, in the h → γγ toy example we

considered in Sec. II C, in which the angle between linear polarizations is measured, one has

from Eq. (12)

Zc
B(ξ)

∣∣∣∣
h→γγ

=
1

π

∫ 2π

0

| cos2(φ+ ξ)− cos2(φ)|dφ =
4

π
| sin ξ | . (45)

By comparing this toy system with HBH, it is therefore natural to deduce that Zc
B(ξ)/| sin ξ|

provides a measure of the average CPV signal size obtainable via the matrix element method,

for any ĉ, c̃. That is, this measure is independent of ξ and the overall normalization ĉ2 + c̃2.

The fit in Fig. 7 suggests this CPV signal is O(10%) for an angular resolution cut θ`` > 10−5,

and O(5%) for θ`` > 10−4. Hence, for the most pessimistic case that there is no deviation

from the SM in the total h → γγ rate the detection of NP from the full matrix element

method will be challenging, even if there is large CPV component in h→ γγ.

C. Differential azimuthal scattering rate

Let us also consider the sensitivity of an experiment in which just one relative azimuthal

angle – the difference of the azimuthal angles between two opposite branch leptons – is

reconstructed, such as the experiment described in Fig. 1. From Eqs. (28) and (36) we saw

that ξ manifests as a phase shift in the relative azimuthal orientation of leptons on different

branches. It is instructive to write down this manifestation explicitly. Let us transform from

the azimuthal coordinates φi± to the coordinates

ϕ ≡ φ1+ + φ2+ , εi ≡ φi− − φi+ , (46)
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and choose φ1+ = 0, without loss of generality. With this choice ϕ and ε1 ∈ [0, 2π), while

ε2 ∈ (−2π, 2π). For the case that the Higgs is at rest, we find from Eqs. (31) and (36) that

the HBH square amplitude, and thus the leading order differential scattering rate, takes the

generic form

dΓ/dps =
1

q4
1q

4
2

[
a+

∑
j

bj cos εj +
∑
k

ck cos
(
nkε1 +mkε2 + 2ϕ+ 2ξ

)]
, (47)

where a, bj and ck are real functions of γi± and θi± – they span the energy, polar angle

phase space, denoted hereafter by PSγ,θ – but are independent of the azimuthal structure,

and nk, mk are positive integers that satisfy nk + mk = 0, 1, or 2. From Eq. (37), one sees

that the 1/q4 factors depend on both the azimuthal and polar angles, but in a way such

that q4 = η(1 + ζ cos ε)2, where ζ < 1. Hence 1/q4 may be expanded in a power series of

ζ cos ε < 1. Integrating over the ε acoplanarity angles, one may then show that, with respect

to the azimuthal structure, only constant or cos(2ϕ+2ξ) terms survive. That is, the leading

order differential scattering rate

dΓ

dϕ dpsγ,θ
= (ĉ2 + c̃2)

[
Aγ,θ + Bγ,θ cos(2ϕ+ 2ξ)

]
, (48)

in which the γ, θ subscript denotes exclusive dependence on the energy polar angle phase

space, PSγ,θ.

The results (47) or (48) show that ξ-dependence and γ, θ-dependence factorize. Hence ξ

appears only in the azimuthal structure as a phase shift. Specifically, the CPV parameter ξ

manifests itself in the inter-branch azimuthal structure in the differential rate

dΓ

dϕ
= (ĉ2 + c̃2)

[〈
Aγ,θ

〉
PSγ,θ

+
〈
Bγ,θ

〉
PSγ,θ

cos(2ϕ+ 2ξ)
]
, (49)

which we have now shown is oscillatory with respect to ϕ at leading order. Note that we

could have chosen ϕ to be any of the four inter-branch angles ϕ1α2β ≡ φ1α + φ2β , where

α, β = ±, of which three are linearly independent. Results similar to Eq. (48) follow with

appropriate replacements.

In the right panel of Fig. 8 we show the differential distribution dΓ/dϕ for HBH events

(including a loose cut on the polar angles, at 10−5) for two values of ξ. It is evident that the

oscillation amplitude, 〈B〉/〈A〉, is small – approximately ∼ 2% – when averaged over all of

the phase space PSγ,θ.
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The key question we now wish to address is whether such a small oscillation amplitude

is because of small, O(1%) oscillations, or whether there is an O(1%) part of the phase

space where deviations from the SM are O(1). In the language of Eq. (48), this question

can be rephrased in a precise manner: Is 〈B〉U/〈A〉U small for all U ⊂ PS, or does there

exist U ⊂ PS such that 〈B〉U/〈A〉U is O(1). The latter possibility is phenomenologically

preferred, since it permits the extraction of an O(1) CPV signal on U , which would scale

better with increasing statistics.

To address this question, let us begin by examining the coplanar limit. In this limit the

acoplanarity angles ε1,2 are both zero, and we have from Eq. (47)

dΓ

dϕ dpsγ,θ
= Aco

γ,θ + Bco
γ,θ cos(2ξ + 2ϕ) . (50)

In the coplanar limit the size of the modulation is given by

Bco
γ,θ

Aco
γ,θ

=
∏
i=1,2

Ri(1− γi+θi+γi−θi−)2

(1 + γ2
i+
θ2
i+

)(1 + γ2
i−
θ2
i−

) +Ri(γi−θi− + γi+θi+)2
, (51)

where Ri ≡ 2γi+γi−/(γ
2
i+

+ γ2
i−). The ratio Bco/Aco is small when γθ ∼ 1, i.e. near the peak

of the square matrix element, but Bco/Aco → 1, for γθ � 1 and γ± not much bigger than

γ∓. An example is shown in Fig. 8, where Ei± and θi± are held fixed such that θi± � m/Ei±

and γ+ ∼ γ−. In this slice of phase space the azimuthal oscillation amplitude is large and

there is a strong sensitivity to CPV. This shows that regions of phase space with large CPV

signals exist.

D. CPV enhancing cuts

We now use the results from Sec. IV B to design kinematic cuts that enhance the sensitiv-

ity of dΓ/dϕ to CP violation. That is, we seek to enhance the ratio 〈B〉/〈A〉 for a particular

subset of the HBH event sample. The cuts we propose fall into two classes: those which

are placed on the kinematics of the whole event; and those which are placed independently

on individual photons and their daughter leptons. As they use all of the information in

the event, including correlations among the two photons, one might expect that the former

produce better CPV signals compared to the latter. As we shall see, however, both classes

of cuts perform approximately equally well in enhancing 〈B〉/〈A〉 on their respective phase

space subregions.
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FIG. 8. Left: Illustration of O(1) oscillations and phase shifts in the HBH differential rate for

a sample coplanar kinematic configuration. The azimuthal angle ϕ in this slice is defined as in

Eq. (46). The kinematic configuration is: Ei+ = Ei− = mh/4, θi+ = 10−4, θi− = 2θi+ so that

γ±θ± ∼ 10 � 1 and γ+ = γ−, cf. analysis of Eq. (51). Right: The azimuthal distribution dΓ/dϕ

for ξ = 0 and for ξ = π/4 with a polar angle cut θi± > 10−5 and θ`` > 10−5. The modulation

amplitude is 2%, but will grow to O(1) once optimization cuts are applied, see Sec. V D.

1. Cuts on collective kinematics

The helicity interference terms (32) in the HBH rate arise dominantly from the term

Re(α+
112
α+

121
α+

212
α+

221
e−2iξ). We can use this observation to pick only events in which

α+
112
α+

121
α+

212
α+

221
is comparable to the rest of the squared amplitude. With reference to

Eqs. (33) and (34) we thus introduce several sensitivity parameters Tn

Tn ≡ Xn
/[∣∣∣α+

111
α+

211

∣∣∣2 +
∑
j 6=k
rk 6=sk

∣∣∣α+
j11
α+
krs

∣∣∣2 + Xn
]
, (52)

where n = M (′), R(′), J (′), with

XM = 4|α+
112
α+

121
α+

212
α+

221
| , XR = 4Re[α+

112
α+

121
α+

212
α+

221
] , XJ = 4Im[α+

112
α+

121
α+

212
α+

221
] ,

and XM′,R′,J′ =
∑
j 6=k

r 6=s,ρ 6=σ

∣∣∣α+
jrs
α+
kρσ

∣∣∣2 + XM,R,J . (53)

The first two terms of the denominator in Eq. (52) are simply the ξ independent parts of

the HBH squared amplitude (31), while the Xn’s are various pieces of the interference terms.

In particular, TM is the magnitude of the full leading order interference term, while TR,J

are respectively the CP-even and CP-odd interference terms. We expect each to be useful
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gauge of sensitivity to CPV independent of ξ. For example, cuts on TR and TJ will enhance

the azimuthal modulations in the ξ = 0 and ξ = π/4 respectively, and can thus be used to

distinguish among these. In all cases Ti → 1 (Ti → 0) implies full (no) CPV sensitivity.

For all numerical analysis we use three private Monte Carlo codes that were cross-checked.

The details on Monte Carlo event generation can be found in Appendix F. Placing a cut

on Tn produces an event sample with large 〈B〉/〈A〉 ratio. This is shown in Fig. 9 for

opening angle cut θ`` > 10−5 and in Fig. 10 for opening angle cut of θ`` > 10−4. The dΓ/dϕ

distributions are shown for two choices of CPV parameters, ξ = 0 (blue histograms) and

ξ = π/4 (red histograms). The fits to the functional form (48) of the dΓ/dϕ HBH differential

rate are shown as solid blue and dot-dashed red lines, respectively. The efficiencies of the

cuts for the examples shown in Figs. 9 and 10 are ∼ 1% for the upper panels and ∼ 0.1%

for the lower panels (the exact values of efficiencies depend on the value of ξ). The presence

of ξ 6= 0 exhibits itself as the expected phase shift in dΓ/dϕ differential rate (48).

From Figs. 9 and 10 we see that it is possible to select regions of phase space such that

〈B〉/〈A〉 ∼ O(1). In particular the average modulation 〈B〉/〈A〉 is large (small) for ξ = 0

(ξ = π/4) for TR,R′ and vice versa for TJ,J′ as shown most strikingly in the bottom panels.

In contrast, the average modulation size does not depend on ξ for the events selected by

TM. This suggests that using several of the parameters Tn simultaneously may optimize the

sensitivity to CPV further.

2. Cuts on individual photon conversions

We now turn to discuss cuts on individual photon branches of the HBH process. These

cuts are generated by simple sufficiency conditions, that ensure a large CPV signal.

From Eqs. (31) and (32), in order to ensure that the ξ-dependent terms are comparable to

the full rate, it suffices to require |α+
i12
α+
i21
| & |α+

i11
|2 on each branch (i = 1, 2) independently.

For the case that the Higgs is at rest, using (36), this sufficiency condition is implied by

S & 1 for each branch, where

S ≡ 2(1− cos δ)

[
γ+γ−

(γ+ + γ−)2

][
γ+θ+γ−θ−

(γ2
+θ

2
+ − γ2

−θ
2
−)2

]
(1 + γ2

+θ
2
+)(1 + γ2

−θ
2
−) . (54)

For brevity, we have dropped the Latin branch index, and here δ ≡ |φ− − φ+| − π is the

acoplanarity angle.
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FIG. 9. The differential HBH rate dΓ/dϕ as a function of the azimuthal angle ϕ between the

positrons setting the CPV parameter to ξ = 0 (blue histograms) and ξ = π/4 (red histograms).

The histograms are binned Monte Carlo events with different cuts on parameters Tn, Eq. (52),

as denoted in the panels. The solid blue (red dot-dashed) curves are the result of fitting the

normalized binned events to Eq. (50) for the ξ = 0 (ξ = π/4) cases with ξ also floated in the fit.

The angular resolution cut is θ`` > θcut = 10−5.

It is notable that this sufficiency condition weights the desirable energy-polar angle regions

of phase space inversely by the amount of acoplanarity. Specifically, S = 0 in the exact

coplanar configuration δ = 0. Of course, S is not a necessary condition for a large CPV

signal, so relatively coplanar events – i.e. events for which δ � δcut of the event sample

(δcut = 0.4π or 0.25π for our MC, see App. F) – may in principle significantly contribute to

large CPV signals in dΓ/dϕ. Also note that symmetric conversions, i.e. γ+θ+ ' γ−θ−, are

more likely to produce a large S, and hence a strong interference effect.

Fig. 11 shows the results of the S1,2 > 1 cut for the angular resolution cut (38) θcut = 10−5

for ξ = 0 compared to ξ = π/20 (top left) or π/4 (top right). Note we also constrain

the acoplanarity δ1,2 ∈ [3π/4, 5π/4], since we do not expect extremely acoplanar events to
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FIG. 10. The same as in Fig. 9, but with the opening angle cut θ`` > θcut = 10−4.

encode polarization information. The angular resolution cut alone retains approximately

40% of the total HBH events on this acoplanar domain; for ξ = π/4, the corresponding

azimuthal distribution is shown in Fig. 8. The addition of the S1,2 > 1 cut reduces the

cut efficiency to 2.6%, but unlike Fig. 8, now 〈B〉/〈A〉 ∼ O(0.2). The phase shift due to

non-zero ξ is clearly visible in both plots, and the value of ξ extracted from the fits agrees

with the input values of ξ = π/20 or π/4 respectively.

Finally, the bottom panels of Fig. 11 displays the acoplanarity on each branch for the

ξ = π/4 HBH events with no S cut compared to the S1,2 > 1 cuts. We see that the S cut

mildly favors acoplanar events, as it broadens the acoplanarity distribution and disfavors

relatively coplanar events. For example, we see that events with acoplanarity δ < 1% are

disfavored in the cut distribution, and we also see that the full width at half maximum of

the acoplanar distribution increases by 50%, from 0.04π to 0.06π, under the S > 1 cut. The

excellent performance of S compared to Tn cuts (see Fig. 12 and Sec. V D 3 below) therefore

suggests that acoplanar events – e.g. with δ 6� δcut – play an important role in encoding

the CPV signal.
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FIG. 11. Top panels: The azimuthal distributions dΓ/dϕ for ξ = 0 (grey histograms) and for

ξ = π/20, π/4 (blue histograms, left and right top panels) with S1,2 > 1 on the domain δ1,2 ∈

[3π/4, 5π/4]. The solid (dashed) curves denote fits to Eq. (48), with ξ a free parameter in the

fits. The bottom left (right) panel shows the acoplanarity distributions, dΓ/dδφ, δφ ≡ (φ+ − φ−)

mod 2π for each photon branch, displayed by blue and gray histograms respectively, with ξ = π/4

and no S cut (S1,2 > 1). Note that the scale varies between these two plots. The corresponding

cumulative acoplanarity distributions cdf(δφ) for each branch are denoted by solid black and grey

dashed lines on each plot. In all panels the angular resolution cut (38) of θcut = 10−5 was applied.

3. Cut scheme efficiencies

It remains to determine the efficiency of the above cut schemes. In Fig. 12 we show the

CPV signal 〈B〉/〈A〉 for the various Tn and S schemes as a function of the fraction of the

total MC event sample, not rejected by combined sensitivity and angular resolution cuts.

Up to small corrections this fraction is the absolute cut efficiency, see Appendix F for details.

For comparison, the data point with only angular resolution cuts is also shown for each plot.
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FIG. 12. Comparison of different sensitivity parameter cut schemes, in terms of cut efficiency,

for various angular resolution cuts. The black data point on each plot denotes the efficiency and

〈B〉/〈A〉 for its angular resolution cut alone, with no enhancements from sensitivity parameter

cuts.

We see that an increase of the CPV signal by an order of magnitude roughly requires an

order of magnitude penalty in sample size. Moreover, for high cut efficiencies, the Si scheme

provides the largest CPV signal. In contrast, in the low efficiency, but higher signal regions,

the Tn schemes outperform the Si cuts.

The Si parameter is defined on an individual photon branch, independently of the lepton

configurations on the other branch, while Tn is defined on the configuration of whole HBH

events. We therefore might deduce that the main difference between these two schemes

is whether they are affected by inter-branch leptonic configurations. If this deduction is

correct, then the comparative performance of Si versus Tn cuts, shown in Fig. 12, suggest

that inter-branch configurations become more important for the extraction of larger CPV

signals, but are not important over most of the CPV sensitive phase space.

32



E. Triple products

Finally, we briefly comment on the possibility to use CP-odd quantities such as triple

products to directly search for CPV. Since the CP odd terms in |M|2 are C even and P

odd, we could consider two such contractions

τ1 = εp1−p1+p2−p2+ , (55)

and

τ2 =
1

4

(
εPp1+p2−p2+ + εp1−Pp2−p2+ + εp1−p1+Pp2+ + εp1−p1+p2−P

)
, (56)

where P µ = (M,0) is the nucleus momentum, and εpqrs is shorthand for the Levi-Civita

contraction εµνρσpµqνrρsσ. In terms of scalar triple products,

τ1 = E1+p1− ·(p2+× p2−)− E1−p1+ ·(p2+× p2−) + 1↔ 2 ,

τ2 = M
[
p1− · (p2+ × p2−)− p1+ · (p2+ × p2−) + 1↔ 2

]
.

(57)

Note, that τ2 is not strictly speaking C-even, since it involves the nucleus momentum.

However BH conversion on nucleus is the same as on anti-nucleus within our uncertainties.

This is equivalent to leaving P µ unchanged under C transformation. A detailed analysis is

beyond the scope of our work, but we remark in passing that a straightforward use of the

S and Tn cuts does not lead to appreciable non-zero value of 〈τ〉. Further investigation is

warranted.

VI. CONCLUSION

In this work we have studied how to probe the underlying CP couplings of the Higgs

to two photons, which undergo Bethe-Heitler conversion on nuclei. We have shown that

sensitivity to CP violating couplings is possible only if there is interference between con-

version amplitudes with different photon helicity. Using spinor helicity methods, we have

computed compact, leading order expressions for these amplitudes, which are novel to this

work. Our analytical control of the leading order h → γγ
BH→ 4e full differential scattering

rate permits us to show that: (i) the differential rate with respect to the relative azimuthal

angles between leptons with different parent photons is oscillatory; (ii) CPV is encoded as

a phase shift in such distributions; and (iii) we may construct various sensitivity parameter
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cuts that extract the regions of phase space on which such oscillations – the CPV signal –

are order unity on average. These analytical results have been confirmed and explored with

numerical simulations, including a comparison of the relative effectiveness of the different

sensitivity parameters.

For simplicity we restricted our numerical and CP sensitivity analysis to the case that

the Higgs is at rest in the lab frame. This is not the case in the LHC experiments, and this

assumption needs to be lifted for more realistic studies. We note, in this vein, that Eqs. (B3)

hold also for the boosted Higgs case, although Eqs. (36) do not. The sensitivity parameter

cut schemes are expected to work comparatively well in the case that the Higgs is boosted,

too. On a similar note, we expect these sensitivity cuts to enhance the full matrix element

method. This method, as characterized by the parameter Zc
B, appears to be a few times

more sensitive to CPV than experiments measuring a single relative azimuthal angle. This

leaves open the possibility of further improved CPV signals, compared to those shown in

this work.

We do not expect a h→ γγ
BH→ 4e experiment to be straightforward, and further exper-

imental and theoretical studies are needed in order to see if the methods discussed in this

paper can be used in practice. From an experimental viewpoint, it needs to be determined

how well one can reconstruct the electron and positron momenta for opening angles ∼ 10−4

or even down to ∼ m/mh ∼ 10−5, and whether there are significant rescatterings after BH

production. Already from our preliminary studies it is clear that large statistical datasets

and fine granularity of the detectors will be needed, such as at the proposed ILC or TLEP.

Experimentally, the situation may be more favorable in such a machine, having a larger

amount of statistics and better kinematic control of the Higgs. A completely independent

direction for measuring the CP violating coupling of Higgs to photons – and a direction

not explored in this paper – would be the use of polarized photon beams at a photon col-

lider. From a theoretical viewpoint, it also remains to determine and search for other CPV

sensitive observables apart from the azimuthal distributions discussed here.

Lastly, while we focussed on Higgs diphoton decays in this work, most of this analysis

holds for any pair of correlated photons. They can arise from a resonance, like the Higgs,

or from scattering events. While the details have to be determined in a case-by-case basis,

the principles, such as helicity interference, are the same.
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Appendix A: Spinor-helicity formalism

In this paper we extensively use the spinor-helicity formalism, in which the sigma ma-

trices σµaȧ solder null momenta to Weyl spinors, that transform under the spinor irreducible

representations of the covering group SL(2,C). For a review see e.g. Ref. [53] or [54].

For a null momentum k, the associated Weyl spinors λk are soldered via

kµ =
1

2
〈k±|σµ|k±〉 , /k ≡ kµσ

µ
aȧ = (λk)a(λk)ȧ , (A1)

in which we have written the dotted and undotted Weyl spinors in the notation

〈k−| ≡ (λk)
a , 〈k+| ≡ (λk)ȧ , |k+〉 ≡ (λk)a , |k−〉 ≡ (λk)

ȧ , (A2)

so 〈k+|σµ|`+〉 = (λk)ȧσ
µȧa(λ`)a, 〈k−|σµ|`−〉 = (λk)

aσµaȧ(λ`)
ȧ. Upper and lower indices are

related by the usual epsilon contractions, in particular σȧaµ ≡ εabεȧḃσµbḃ. In this notation, the

sign superscripts denote the helicities of the in-going and out-going states, corresponding to
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kets and bras respectively. In particular, note that |k±〉† = 〈k±| by construction, 〈k±|σµ|`∓〉
do not exist, while 〈k−|σµ|`−〉 = 〈`+|σµ|k+〉. For null momenta k and ` we often write the

bilinears

〈k `〉 ≡ 〈k−|`+〉 = (λk)
a(λ`)a , [k `] ≡ 〈k+|`−〉 = (λk)ȧ(λ`)

ȧ , (A3)

so 〈` k〉 = −〈k `〉, [` k] = −[k `], 〈k `〉[` k] = 2k · ` and 〈k `〉∗ = [` k].

In this notation, definite helicity polarization vectors associated to k may have form

ε±µ(k; r) = ±〈r
∓|σµ|k∓〉√
2〈r∓|k±〉

, (A4)

with rµ a reference null momentum. One may show via the Fierz relations that these

polarization vectors satisfy the axiomatic requirements k · ε± = 0, ε± · (ε±)∗ = ε± · ε∓ = −1

and ε± · ε± = 0. In the present work, a particularly convenient choice of reference momenta

is

r1 = k2 , r2 = k1 , (A5)

where r1,2 (k1,2) are reference momenta (photon momenta) corresponding to polarization

vectors ε±1,2 defined in (7). We shall always make this choice of reference momenta.

The dotted and undotted Weyl spinors have explicit representations in terms of the

momentum components in a particular basis, up to a free choice of phase. For example, for

a null momentum k = (k0, k1, k2, k3), a possible choice is

(λk)
a =


(
k1 + ik2

√
k0 − k3

,
√
k0 − k3

)
, k3 < 0 ,(√

k0 + k3 ,
k1 − ik2

√
k0 + k3

)
, k3 > 0 .

(A6)

The components of the upper dotted spinor are immediately specified through the relation

(λk)
ȧ = [(λk)

a]†, and the lower index spinors through appropriate epsilon contractions. With

this choice and a choice of basis, all spinor objects – e.g. 〈k `〉 – can be evaluated explicitly,

just as momentum objects may be, e.g. k · `. Note that for our Weyl spinor phase choice

(A6) one has 〈k1 k2〉 = [k2 k1] = mh.

The Dirac spinors of massive particles may also be represented in the spinor-helicity

formalism, via the application of a light-cone decomposition. For a massive spinor of mo-

mentum p and mass m, we define an associated null momentum

p̃µ = pµ − m2

2p · ``
µ , or equivalently pµ = p̃µ +

m2

2p̃ · ``
µ , (A7)
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where `µ is a null reference momentum. The spinors then decompose similarly as

u1(p) = |p̃+〉+
m

[p̃ `]
|`−〉, u2(p) = |p̃−〉 − m

〈` p̃〉 |`
+〉,

ū1(p) = 〈p̃+|+ m

〈` p̃〉〈`
−|, ū2(p) = 〈p̃−| − m

[p̃ `]
〈`+|,

v1(p) = |p̃−〉+
m

〈` p̃〉 |`
+〉, v2(p) = |p̃+〉 − m

[p̃ `]
|`−〉,

v̄1(p) = 〈p̃−|+ m

[p̃ `]
〈`+|, v̄2(p) = 〈p̃+| − m

〈` p̃〉〈`
−| . (A8)

One may verify that these spinors satisfy the canonical requirements ūu = 2m, v̄v = −2m,

v̄u = ūv = 0 and the completeness relations
∑

j u
jūj = /p + m and

∑
j v

j v̄j = /p −m. Just

as for the polarization vectors, one is free to choose the null reference momentum. This

choice amounts to a choice of ‘gauge’, under which the unpolarized square amplitude must

be invariant, but the polarized square amplitudes are not. In this work, we shall always

make the reference momenta choices

`1± = k2 and `2± = k1 . (A9)

These are convenient choices for the purposes of extracting the leading order BH helicity

amplitudes, as below.

Finally, together with the several well-known spinor identities, the following identity is

especially useful for computing terms involving Levi-Civita contractions,

εαβγδσȧaα σ
ḃb
β σ

ċc
γ σ

ḋd
δ ≡ 4i

(
εḋȧεbaεḃċεdc − εḋċεbcεḃȧεda

)
. (A10)

Appendix B: BH spin-helicity amplitudes

Here we write down explicit expressions for the helicity amplitudes α±irs . From Eqs. (16)

and (24) one has (suppressing the branch index)

α±rs = − i

2q2
ūr(p−)

[
/ε±∗

/p− − /k +m

k · p−
/Q+ /Q

/k − /p+
+m

k · p+
/ε±∗
]
vs(p+)

= − i

2q2

[∑
j

(
ūr/ε∓ujūj /Qvs

k · p−
− ūr /Qvj v̄j/ε∓vs

k · p+

)
− ūr/ε∓/k /Qvs

k · p−
+
ūr /Q/k/ε∓vs

k · p+

]
, (B1)
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where u = u(p−) and v = v(p+). Applying the light cone decomposition (A8) with reference

choices specified in (A4) and (A9), gives the full results for each spin helicity amplitude

α+
11 = −(α−22)∗ =

1

q2
√

2

[
− m [` p̃−] 〈k p̃−〉 〈`−| /Q|p̃+

−〉
k · p− [k `] 〈` p̃−〉

+
m [` p̃+] 〈k p̃+〉 〈`−| /Q|p̃+

−〉
k · p+ [k `] 〈` p̃−〉

− m [` p̃−] 〈k p̃−〉 〈p̃−+| /Q|`+〉
k · p− [k `] 〈` p̃+〉

+
m [` p̃+] 〈k p̃+〉 〈p̃−+| /Q|`+〉

k · p+ [k `] 〈` p̃+〉

− m 〈k `〉 〈k−| /Q|p̃+
−〉

k · p− 〈` p̃−〉
+
m 〈k `〉 〈p̃−+| /Q|k+〉

k · p+ 〈` p̃+〉

]
α+

12 = +(α−21)∗ =
1

q2
√

2

[
− m2 〈k `〉 〈k−| /Q|`−〉

k · p− [` p̃+] 〈` p̃−〉
+
m2 〈k p̃+〉 〈`−| /Q|`−〉
k · p+ [k `] 〈` p̃−〉

− m2 [` p̃−] 〈k p̃−〉 〈`−| /Q|`−〉
k · p− [k `] [` p̃+] 〈` p̃−〉

− [` p̃−] 〈k p̃−〉 〈p̃−+| /Q|p̃+
+〉

k · p− [k `]

+
[` p̃+] 〈k p̃+〉 〈p̃−+| /Q|p̃+

+〉
k · p+ [k `]

+
〈k p̃+〉 〈p̃−+| /Q|k+〉

k · p+

]
α+

21 = +(α−12)∗ =
1

q2
√

2

[
− [k p̃−] 〈k p̃−〉 〈p̃−−| /Q|p̃+

−〉
k · p− [k `]

+
[` p̃+] 〈k p̃+〉 〈p̃−−| /Q|p̃+

−〉
k · p+ [k `]

+
m2 〈k `〉 〈`+| /Q|k+〉
k · p+ [` p̃−] 〈` p̃+〉

+
m2 [` p̃+] 〈k p̃+〉 〈`+| /Q|`+〉
k · p+ [k `] [` p̃−] 〈` p̃+〉

− m2 〈k p̃−〉 〈`+| /Q|`+〉
k · p− [k `] 〈` p̃+〉

− 〈k p̃−〉 〈k
−| /Q|p̃+

−〉
k · p−

]
α+

22 = −(α−11)∗ =
1

q2
√

2

[
− m 〈k p̃−〉 〈k−| /Q|`−〉

k · p− [` p̃+]
+
m 〈k p̃+〉 〈p̃−−| /Q|`−〉

k · p+ [k `]

− m [` p̃−] 〈k p̃−〉 〈p̃−−| /Q|`−〉
k · p− [k `] [` p̃+]

+
m 〈k p̃+〉 〈`+| /Q|k+〉

k · p+ [` p̃−]

+
m [` p̃+] 〈k p̃+〉 〈`+| /Q|p̃+

+〉
k · p+ [k `] [` p̃−]

− m 〈k p̃−〉 〈`+| /Q|p̃+
+〉

k · p− [k `]

]
. (B2)

As per the main text, we have dropped the photon subscripts, and k, ` = k1, k2 or k2, k1 for

parent photon 1 and 2 respectively. Squaring these amplitudes, taking traces and summing,

one obtains the full Bethe-Heitler square amplitude that is obtained by the usual Feynman

methods.

We can further extract dominant terms of the BH spin-helicity amplitudes by observing

that if qi � mh, then 〈k1 k2〉 � 〈ki pi±〉 etc. Moreover, in expressions such as α+
12 or α+

21, we

may discard subdominant O(m2/ki · pj 6=i) terms. This leads to the following leading order

results in m2/ki · pj 6=i and 〈ki pi〉/〈k1 k2〉 for the BH spin-helicity amplitudes

α+
11 = −(α−22)∗ ' m

q2
√

2

[〈k `〉〈p̃+
−|σ0|k+〉

k · p+〈` p̃+〉
− 〈k `〉〈p̃

+
+|σ0|k+〉

k · p−〈` p̃−〉

]
,

α+
12 = (α−21)∗ ' 〈k p̃+〉〈p̃+

−|σ0|k+〉
q2
√

2k · p+

− [` p̃−]〈k p̃−〉〈p̃+
−|σ0|p̃+

+〉
q2
√

2k · p−[k `]
+

[` p̃+]〈k p̃+〉〈p̃+
−|σ0|p̃+

+〉
q2
√

2k · p+[k `]
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− m2〈k `〉〈k−|σ0|`−〉
q2
√

2k · p−[` p̃+]〈` p̃−〉
,

α+
21 = (α−12)∗ ' −〈k p̃−〉〈p̃

+
+|σ0|k+〉

q2
√

2k · p−
− [` p̃−]〈k p̃−〉〈p̃−−|σ0|p̃−+〉

q2
√

2k · p−[k `]
+

[` p̃+]〈k p̃+〉〈p̃−−|σ0|p̃−+〉
q2
√

2k · p+[k `]

+
m2〈k `〉〈k−|σ0|`−〉

q2
√

2k · p+[` p̃−]〈` p̃+〉
,

α+
22 = −(α−11)∗ ' 0 , (B3)

in which we have dropped the photon subscripts, and uniform overall signs or factors of i;

k, ` = k1, k2 or k2, k1 for photon 1 and 2 respectively; and the spinor notation is detailed in

Appendix A. The parity relations (29) are satisfied as expected. Eqs. (28) and (B3) together

provide a compact expression of the leading order HBH square amplitude.

It should be understood that the particular form for the spin helicity amplitudes above

depends on the choice of reference momenta, because the amplitudes explicitly depend on

polarization vectors and spinors (see App. A). Moreover, the ability to straightforwardly

expand the full results to the leading order results depends on a sensible choice of reference

momenta. In contrast, the full unpolarized BH rate is independent of polarizations and

spinors, as a result of spinor and polarization vector completeness, and therefore must be

independent of any such reference momenta choice.

Appendix C: Polarization-decomposed HBH rate

Here we give the explicit results of a Higgs-Bethe-Heitler Feynman type calculation. To

preempt the loss of numerical precision from large cancellations due to the Ward identity, we

do not use polarization completeness relations. Rather, we retain the polarization vectors

explicitly in the HBH rate. In the case that the Higgs is at rest in the lab frame, we simply

use a Cartesian basis for the polarization vectors, aligning the back-to-back photons with

the z-axis. That is, in the HBH square amplitude we coherently sum over the polarization

basis

ε1µ(k1,2) = (0, 1, 0, 0) and ε2µ(k1,2) = (0, 0, 1, 0) . (C1)

The squared matrix element for the process h + N1 + N2 → γ(k1)γ(k2) + N1 + N2 →
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4`+N ′1 +N ′2 is given by

|M|2 = AµνA∗αβ
∑
pols

a,b,c,d

[
εa∗µ (k1)εb∗ν (k2)εcα(k1)εdβ(k2)εaµ′(k1)εc∗α′(k1)εbν′(k2)εd∗β′ (k2)

]
BHµ′α′

1 BHν′β′

2

(C2)

where the tensor Aµν is

Aµν = ĉ (k1 · k2 g
µν − kµ2kν1) + c̃ εαµβνk1αk2β . (C3)

The BHi factors are the polarized Bethe-Heitler squared amplitudes for a photon i, including

form factor contributions, these are in general

BHab =
G

q4(k · p−)2(k · p+)2

{[
2(k · p−)(k · p+)

(
2E−E+ −m2 − p+ · p−

)
Babk,p−

+
8E+

M
(k · p+)2(k · p−)BabP,p− + (k · p+)2(4E2

+ + q2)Fabp− + (p+ � p−)
]

− 8(k · p−)2(k · p+)2P
aP b

M2

− 2

M
(k · p−)(k · p+)

[
−q2 + 2 (E−(k · p−) + E+(k · p+))

]
BabP,k

+ 2(k · p−)(k · p+)(q2 − 4E−E+)Babp+,p−
+ 2(k · p−)(k · p+)

[
(k · p− + k · p+)2 + q2E2

γ

]
gab

− 4(k · p−)(k · p+)
(
2E−E+ −m2 − p · r

)
kakb

}
, (C4)

where Fab` = `akb + `bka − 2`a`b and Bab`1`2 = `a1`
b
2 + `b1`

a
2. The photon momentum is denoted

by k and the lepton momenta by p+, p−. M and m are the masses of the nucleus and lepton

respectively. Assuming that the Higgs is at rest in the lab frame and that the photon is in

the z-direction, as in Eq. (C1), the previous expression simplifies to

BHab ' 2G
{
gab
[
E2
γ q

2 + (k · p− + k · p+)2
]

(k · p−)(k · p+)
− 4

(
Ep+p

a
−

k · p−
+
Ep−p

a
+

k · p+

)(
Ep+p

b
−

k · p−
+
Ep−p

b
+

k · p+

)}
,

(C5)

where, in the second term, we expanded terms of the form
√

4E2 ± q2 to leading order

in q2/E2. We have checked that the helicity formalism results and the Feynman diagram

calculation results for HBH rate agree.

Finally, the unpolarized BH rate can be obtained from Eq. (C5) simply by averaging over

the photon polarization as follows

〈|M|2〉 = 1/2
(
BH11 + BH22

)
. (C6)
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It is instructive to use the polarization vector completeness relation to obtain an expression

in terms of Lorentz dot products. In this case, starting with Eq. (C4), the BH rate is given

by

〈|M|2〉 =− 4
G
(
E2
− + E2

+

)
q2 k · p− k · p+

+ 8
Gm2 (k · p−E− − k · p+E+)2

q4 (k · p−)2 (k · p+)2

+ 2
Gm2 (k · p− + k · p+)2

q2 (k · p−)2 (k · p+)2
− 2

G k · p−k · p+

(k · p−)2 (k · p+)2
− 4
G (k · p−) 2 + (k · p+)2

q4 (k · p−) (k · p+)

− 4
G k · p− + k · p+

q2 k · p− k · p+

, (C7)

where the leading terms – the terms on the first line – reproduce Eq. (35).

Appendix D: Numerical simulations of Bethe-Heitler conversion

In this appendix we present numerical evaluations of several differential BH rates. The

numerics were done in two ways: by numerically integrating the full tree-level analytical

results – i.e. the BH rate arising from Eqs. (B2) or (C4) with appropriate integration

measures – using the CUBA library [55]; and with a Monte Carlo (MC) code developed

privately (the details are given in Appendix F). Fig. 13 shows the differential distribution

of the positron energy fraction E+ = E+/Eγ. For efficiency the MC simulation (blue binned

histogram) is generated with a cut on the difference of electron and positron azimuthal

angles, δφ ≡ (φ+−φ−) mod 2π ∈ [0.6π, 1.4π] (see App. F). This agrees with the numerical

integration (red line) for the same cuts on δφ.

Fig. 13 (right) shows the positron energy distribution after applying the opening angle

cut of θ`` > 10−4 on the angle between e+ and e− momenta. The MC agrees with the

full numerical integration of the BH rate even though the δφ cut is still applied in the

generation of the events . Fig. 13 demonstrates that the asymmetric configurations, where

one of the two leptons carries the larger part of the photon energies, are the more probable

ones, especially for non-zero opening angles.

Fig. 14 shows the positron polar angle distribution and demonstrates the combined effect

of the Si nuclear form factor and the smaller available phase space that suppress very small

momentum transfers and thus very small polar angles. The peak is at ∼ m/E ∼ 10−5 both

for the distribution without a cut on the e+e− opening angle θ``, Fig. 14 (left), and for the

case where θ`` > 10−4 is imposed, Fig. 14 (right). This cut also results in an additional
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FIG. 13. Spectrum of the positron energy E+ = E+/Eγ . No opening angle cut was applied in

the left hand figure and an opening angle cut of 10−4 was applied in the right hand one. The his-

tograms were created with MC events and the solid curves are results of numerically integrating the

differential cross section. The dashed curve in both figures is the result of numerically integrating

the differential cross section over the entire range of δφ as opposed over the range [0.6π, 1.4π].
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FIG. 14. Polar angle distribution of the leptons. No opening angle cut was applied in the left hand

figure and an opening angle cut of 10−4 was applied in the right hand one. The histograms were

created with MC events and the solid curves are results of numerically integrating the differential

rate expression. The small bump in the right hand figure (∼ 10−4) is a result of applying an

opening angle cut. Its location is a function of the cut.

peak in the distribution, cf. Fig. 14 (right).

In Fig. 15, the distribution in the relative azimuthal angle δφ of the two leptons is shown.

The majority of the events are close to the coplanar configuration, where the photon and the

two lepton momenta all lie in the same plane. However, it is noteworthy that approximately

40% of BH events have acoplanarity of ∼ 5% or more.
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FIG. 15. Left: Distribution of the azimuthal angle between the leptons. The histograms were

created with MC events and the solid curves are results of numerically integrating the differential

rate expression. Right: The cumulative distribution function of the relative azimuthal orientation,

P (δφ/π ∈ [1−∆, 1 + ∆]), from numerical integration.

Appendix E: Analysis for qq̄ → γγ

Performing the measurement proposed in this work faces two main challenges: first,

resolving and reconstructing the electron and positron directions; and second identifying a

background-poor sample of events with Higgs decaying to diphotons. Regarding the first

challenge, one might simply ask how well and with what efficiency can the LHC or a future

collider detector reconstruct the details of photon conversion. To do so, the experimental

collaborations may wish to test the polarization structure of a standard model (non-Higgs)

amplitude. To demonstrate that there is a non-trivial structure to be measured in SM

conversions, we briefly analyze here the leading production of diphotons at the LHC.

The dominant diphoton production (and dominant background for Higgs to photons

events) is qq̄ → γγ scattering. This has tree-level spin-helicity amplitude

[MBG]λ1λ2rs =

P+, s

P−, r

k1, λ1

k2, λ2

+ u channel , (E1)

in which r = 1, 2 (s = 1, 2) is the spin of the (anti)-fermion, and λ1,2 = ± are the usual

photon helicities. The two photons then convert in the tracker. The background rate can

be written in a form similar to Eq. (28). That is, for one fermion species

|MBG|2 = G1G2

∑
r,s

∑
r1,s1,r2,s2

∣∣∣ ∑
λ1,λ2

[MBG]λ1λ2rs αλ11rsα
λ2
2rs

∣∣∣2 . (E2)
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As is well-known, the only non-zero independent amplitudes are [MBG]+−12 and [MBG]−+
12 .

One finds with our usual choice of reference momenta, and the light cone decomposition

(A8) for the quark momenta P±,

[MBG]+−12 =
(
[MBG]−+

21

)∗
=
A+(k1, k2)

P+ · k1

− A
∗
−(k2, k1)

P− · k1

,

[MBG]−+
12 =

(
[MBG]+−21

)∗
=
A+(k2, k1)

P+ · k1

− A
∗
−(k1, k2)

P− · k1

,

A±(k, `) = Q2
f

〈P̃± `〉2[P̃± k][P̃∓ k]

2k1 · k2

,

(E3)

with Qf the fermion electric charge. The square amplitude simplifies to

|MBG|2 = 2G1G2

∑
r1,s1,r2,s2

∣∣∣[MBG]+−12 α
+
1rsα

−
2rs + [MBG]−+

12 α
−
1rsα

+
2rs

∣∣∣2 . (E4)

It is interesting to contrast this with the HBH result. Here the helicity interference arises

in terms of the form α+
112
α−212α

+
121
α−221 , rather than from α+

112
α+

212
α+

121
α+

221
as we found for

HBH. Since α−12 = (α+
21)∗, etc, it follows from the explicit results (36) that this helicity flip

on branch ‘2’ produces a phase change φ2± → −φ2± in the background interference term,

compared to the HBH interference terms.

To compare with the Higgs rest frame HBH rate (48), we assume the quark centre of mass

frame aligns with the nuclear rest frame. Integrating all over azimuthal structure except

ψ ≡ φ1+ − φ2+ (cf. ϕ = φ1+ + φ2+ in Eq. (46)), one finds that the background rate has the

form
dΓ

dψdpsγ,θ
= ABG

γ,θ + BBG
γ,θ cos(2ψ) . (E5)

We see that this differential rate has sinusoidal dependence on the mean azimuthal orienta-

tion, ψ, of the outgoing positrons, with respect to, say, the incoming quarks – the beamline

– rather than the inter-branch lepton azimuthal orientation, ϕ, as in HBH. Moreover, the

phase change φ2± → −φ2± ensures background is flat in ϕ. Note also that unlike the HBH

process, the [MBG]+− factors ensure this background rate features higher spin waves, so

that its angular differential structure will differ from the HBH structure, too.

In summary, the leading-order doubly-converted qq̄ → γγ square amplitude is given

explicitly by Eqs. (E3) and (E4) combined with the BH spin-helicity amplitudes (B3). In

the qq̄ center of mass frame, the corresponding leading order BH amplitudes are given in

Eqs. (36).
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Appendix F: Monte Carlo numerical schemes

To generate Monte Carlo (MC) events for the HBH process, we first generate unpolar-

ized BH events and then use the von Neumann rejection technique to re-weight the events

according to the HBH differential rate. For a single HBH event one needs two BH events

taken from disjoint MC samples. Therefore, we first describe the generation of unpolarized

BH events.

The phase space for a single BH event, γN → e+e−N , is five dimensional. We take

z-axis to be the incoming photon direction. For conversion of unpolarized photons, the

kinematics are invariant under overall azimuthal rotations around the z axis. We therefore

fix the positron azimuthal angle to zero. The remaining four coordinates are chosen to be

the electron energy fraction E− = E−/Eγ, two transformed polar angles, t1 = log10(θ+) and

t2 = log10(θ−), and the azimuthal angle of the electron φ− (see Fig. 6 for definitions).

For MC we used two independent private codes. One is written in C and the other in

C++/Java. To populate the BH phase space we first randomly generate the values for E−, t1,2

and φ− according to either uniform distributions or conveniently chosen initial probability

density functions (PDFs) and then unweight to obtain the BH event distribution.

For the C code, the initial PDFs are as follows. For a 60 GeV photon, generating E−
according to a uniform distribution results in an efficiency of ∼ 70%. We therefore generate

a uniform distribution of E− ∈ [m/Eγ, 1−m/Eγ]. The transformed polar angle variables, t1

and t2, are generated according to uniform distributions in a suitable numerical range, see

Table I. Using the coordinates t1,2 captures the fact that electron and positron distributions

are sharply peaked around θ± ∼ m/E. The BH events are also dominated by kinematic

configurations that are not too far from the coplanar one. We therefore generate φ− in

the range [0.6π, 1.4π], which suffices for our precision. To capture the fact that the BH

distribution is peaked toward φ−/π = 1, the C code generates φ− according to a Cauchy

distribution (Lorentzian) with location parameter xo = π and scale parameter λ = 0.03π [56]

to improve the efficiency. The C++/Java uses similar initial data, with the exception of

slightly different ranges and that φ− is populated by a uniform distribution on a slightly

narrowed domain φ− ∈ [3π/4, 5π/4] (see Table. I).

In the next step we unweight the events generated from initial PDFs to obtain the proper

BH distribution. In the unweighting, the events are rejected with a probability that is
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C C++/Java

Parameter Range PDF Range PDF

E− [m/Eγ , 1−m/Eγ ] Uniform [m/Eγ , 1−m/Eγ ] Uniform

t1 [−7,−2] Uniform [−6,−3] Uniform

t2 [−7,−2] Uniform [−6,−3] Uniform

φ− [0.6π, 1.4π] Lorentzian [3π/4, 5π/4] Uniform

TABLE I. The details on the MC generation of BH events, with phase space variables (1st column)

for C (C++/Java) generated in the range given in the 2nd (4th) column according to the distribution

given in the 3rd (5th) column (for details see text).

1 − w, with w = (dΓbh/dps)/max(dΓbh/dps). The BH MC event sample was validated by

comparing the generated event distributions to the results of numerical integration of BH

differential cross-sections as shown in Figs. 13, 14 and 15. Additionally, in Figs. 13 and 14,

the distributions with a cut on the opening angle between e+ and e− of θ`` > 10−4 are shown.

The MC sample is in excellent agreement with the results of numerical integration.

In the final step, we convert the generated BH events into MC event samples for the HBH

process. To do so, two disjoint BH samples were used – one sample per photon branch. The

rate for two BH events is given by (dΓbh1/dps)(dΓbh2/dps). To obtain the proper HBH even

rates, we use the standard reweighting technique where events are rejected according to the

weight

w =
(dΓhbh/dps)[ϕ]

(dΓbh1/dps) (dΓbh2/dps)
, (F1)

where the twist angle between the positrons, ϕ, is populated by a uniform distribution on

[0, 2π].

The two MC codes have been cross tested. In numerics we use 3× 106 HBH events from

the C generator and 8× 105 HBH events from the C++/Java MC generator.
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